121 research outputs found

    Place, recreation and local development

    Get PDF
    Proceedings of the 9th International Conference on Monitoring and Management of Visitors in Recreational and Protected Areas (MMV9), Bordeaux, FRA, 29-/08/2018 - 31/08/2018It is our pleasure to welcome you to the 9th international Conference on Monitoring and Management of Visitors in Recreational and Protected Areas (MMV9) with a program including keynote speeches, organized and poster sessions, a half-day field trip, social events and post conference trips. This is the first time that France has hosted an MMV Conference. Our country is ranked as the world's top tourist destination, thanks largely to its culture, art, and gastronomy, as well as popular cities such as Paris and Bordeaux. On the other hand, France's potential as a destination for outdoor recreation and nature-based tourism is not hugely publicized, despite its many unique features in this respect: varied climate and natural assets (shoreline, mountains, lakes, and forests), large expanses of countryside, and a network of protected natural areas, to name but a few. France's protected areas are often free to access for the general public. However, in contrast with other countries, nature conservation in specific areas is much less widespread. Where it does take place, it is often centered on territories that are perceived to be "attractive", and where many conflicting activities are practiced. This may be one of the reasons why contractual tools and regional park systems are quite popular in France. The MMV Conference offers an excellent opportunity to discuss the situation in France in greater depth. The theme proposed for the conference was "recreation, place and local development". This reflects our assumption that recreational areas are not just physical assets designed to receive visitors for the purpose of leisure - which in itself would already be something of great importance - but that they reflect deeper social phenomena, as demonstrated through the range of organized sessions dedicated to discussing questions such as environmental education and economic development, but also emerging themes such as social integration, community resilience, environmental justice, and health. The traditional topics covered by MMV Conference reflect an evolving society: with innovations in monitoring techniques (both on people and nature), focus on new populations (Y generation, ethnic minority) and a larger concern for individual engagement and participative management. The 9th Edition of MMV is co-hosted by Irstea and BSA. This would not have been possible without significant contributions from a large number of additional partners and sponsors as well as our national scientific and organizing committee. We would like to take this opportunity to thank everyone for their help. After two years of planning, we are proud to announce that we have more than 160 presentations from 30 countries, meaning that the conference will host over 200 participants from across the globe. We are honored that the International Steering Committee has given us the opportunity to be part of this great MMV community, which organized its first meeting in 2002. We hope you will enjoy the conference as much as we enjoyed organizing it. If you can't be with us in person, we hope that you will enjoy reading our publications

    Quantification of the endogenous growth hormone and prolactin lowering effects of a somatostatin-dopamine chimera using population PK/PD modeling

    Get PDF
    A phase 1 clinical trial in healthy male volunteers was conducted with a somatostatin-dopamine chimera (BIM23B065), from which information could be obtained on the concentration-effect relationship of the inhibition of pulsatile endogenous growth hormone and prolactin secretion. Endogenous growth hormone profiles were analyzed using a two-step deconvolution-analysis-informed population pharmacodynamic modeling approach, which was developed for the analyses of pulsatile profiles. Prolactin concentrations were modelled using a population pool model with a circadian component on the prolactin release. During treatment with BIM23B065, growth hormone secretion was significantly reduced (maximal effect [E-MAX] = - 64.8%) with significant reductions in the pulse frequency in two out of three multiple ascending dose cohorts. A circadian component in prolactin secretion was identified, modelled using a combination of two cosine functions with 24 h and 12 h periods. Dosing of BIM23B065 strongly inhibited (E-MAX = - 91%) the prolactin release and demonstrated further reduction of prolactin secretion after multiple days of dosing. This study quantified the concentration-effect relationship of BIM23B065 on the release of two pituitary hormones, providing proof of pharmacology of the chimeric actions of BIM23B065

    Structure of HIV-1 gp41 with its membrane anchors targeted by neutralizing antibodies

    Full text link
    The HIV-1 gp120/gp41 trimer undergoes a series of conformational changes in order to catalyze gp41-induced fusion of viral and cellular membranes. Here, we present the crystal structure of gp41 locked in a fusion intermediate state by an MPER-specific neutralizing antibody. The structure illustrates the conformational plasticity of the six membrane anchors arranged asymmetrically with the fusion peptides and the transmembrane regions pointing into different directions. Hinge regions located adjacent to the fusion peptide and the transmembrane region facilitate the conformational flexibility that allows high-affinity binding of broadly neutralizing anti-MPER antibodies. Molecular dynamics simulation of the MPER Ab-stabilized gp41 conformation reveals a possible transition pathway into the final post-fusion conformation with the central fusion peptides forming a hydrophobic core with flanking transmembrane regions. This suggests that MPER-specific broadly neutralizing antibodies can block final steps of refolding of the fusion peptide and the transmembrane region, which is required for completing membrane fusion

    Mechanism of the allosteric activation of the ClpP protease machinery by substrates and active-site inhibitors

    Get PDF
    18 pags., 6 figs., 1 tab. -- Open Access funded by Creative Commons Atribution Licence 4.0Coordinated conformational transitions in oligomeric enzymatic complexes modulate function in response to substrates and play a crucial role in enzyme inhibition and activation. Caseinolytic protease (ClpP) is a tetradecameric complex, which has emerged as a drug target against multiple pathogenic bacteria. Activation of different ClpPs by inhibitors has been independently reported from drug development efforts, but no rationale for inhibitor-induced activation has been hitherto proposed. Using an integrated approach that includes x-ray crystallography, solid- and solution-state nuclear magnetic resonance, molecular dynamics simulations, and isothermal titration calorimetry, we show that the proteasome inhibitor bortezomib binds to the ClpP active-site serine, mimicking a peptide substrate, and induces a concerted allosteric activation of the complex. The bortezomib-activated conformation also exhibits a higher affinity for its cognate unfoldase ClpX. We propose a universal allosteric mechanism, where substrate binding to a single subunit locks ClpP into an active conformation optimized for chaperone association and protein processive degradation.This work used the platforms of the Grenoble Instruct center (ISBG; UMS 3518 CNRS-CEA-UJF-EMBL) with support from INSTRUCT (“Innovative EM/NMR approach for the characterization of the drug target ClpP APPID: 301“), FRISBI (ANR-10-INSB-05-02), and GRAL (ANR-10-LABX-49-01) within the Grenoble Partnership for Structural Biology (PSB). We thank the ESRF for beamtime at ID30A and ID23-1. Funding: This work was supported by Spanish Ministerio de Economia y Competitividad (BFU2016-78232-P) and Instituto de Salud Carlos III co-funded by European Union (PI15/00663 and PI18/00349, ERDF/ ESF, “Investing in your future”). This work was financially supported by the European Research Council (ERC-Stg-2012-311318 to P.S.). J.F. is supported by an EMBO long-term post-doctoral fellowship (ALTF441-2017)

    Trends in thermostability provide information on the nature of substrate, inhibitor, and lipid interactions with mitochondrial carriers

    Get PDF
    Background: Methods for rapid assessment of interactions of small molecules with membrane proteins in detergent are lacking.  Results: Thermostability measurements of mitochondrial transporters display informative trends about detergent, lipid, substrate, and inhibitor interactions.  Conclusion: Mechanistic insights are obtained by studying the thermostability of mitochondrial transporters.  Significance: Information about the nature of compound interactions with membrane proteins can be obtained rapidly

    A Combination of Receptor-Based Pharmacophore Modeling & QM Techniques for Identification of Human Chymase Inhibitors

    Get PDF
    Inhibition of chymase is likely to divulge therapeutic ways for the treatment of cardiovascular diseases, and fibrotic disorders. To find novel and potent chymase inhibitors and to provide a new idea for drug design, we used both ligand-based and structure-based methods to perform the virtual screening(VS) of commercially available databases. Different pharmacophore models generated from various crystal structures of enzyme may depict diverse inhibitor binding modes. Therefore, multiple pharmacophore-based approach is applied in this study. X-ray crystallographic data of chymase in complex with different inhibitors were used to generate four structure–based pharmacophore models. One ligand–based pharmacophore model was also developed from experimentally known inhibitors. After successful validation, all pharmacophore models were employed in database screening to retrieve hits with novel chemical scaffolds. Drug-like hit compounds were subjected to molecular docking using GOLD and AutoDock. Finally four structurally diverse compounds with high GOLD score and binding affinity for several crystal structures of chymase were selected as final hits. Identification of final hits by three different pharmacophore models necessitates the use of multiple pharmacophore-based approach in VS process. Quantum mechanical calculation is also conducted for analysis of electrostatic characteristics of compounds which illustrates their significant role in driving the inhibitor to adopt a suitable bioactive conformation oriented in the active site of enzyme. In general, this study is used as example to illustrate how multiple pharmacophore approach can be useful in identifying structurally diverse hits which may bind to all possible bioactive conformations available in the active site of enzyme. The strategy used in the current study could be appropriate to design drugs for other enzymes as well

    The transport mechanism of the mitochondrial ADP/ATP carrier

    Get PDF
    The mitochondrial ADP/ATP carrier imports ADP from the cytosol and exports ATP from the mitochondrial matrix, which are key transport steps for oxidative phosphorylation in eukaryotic organisms. The transport protein belongs to the mitochondrial carrier family, a large transporter family in the inner membrane of mitochondria. It is one of the best studied members of the family and serves as a paradigm for the molecular mechanism of mitochondrial carriers. Structurally, the carrier consists of three homologous domains, each composed of two transmembrane α-helices linked with a loop and short α-helix on the matrix side. The transporter cycles between a cytoplasmic and matrix state in which a central substrate binding site is alternately accessible to these compartments for binding of ADP or ATP. On both the cytoplasmic and matrix side of the carrier are networks consisting of three salt bridges each. In the cytoplasmic state, the matrix salt bridge network is formed and the cytoplasmic network is disrupted, opening the central substrate binding site to the intermembrane space and cytosol, whereas the converse occurs in the matrix state. In the transport cycle, tighter substrate binding in the intermediate states allows the interconversion of conformations by lowering the energy barrier for disruption and formation of these networks, opening and closing the carrier to either side of the membrane in an alternating way. Conversion between cytoplasmic and matrix states might require the simultaneous rotation of three domains around a central translocation pathway, constituting a unique mechanism among transport proteins. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou

    On disequilibrium savings and public consumption

    No full text
    corecore